
REX: MACHINE
LEARNING WITH SPARK

JOURNÉE LOOPS, 7 AVRIL 2016

Created by @maryanmorel

CONTEXT

Moore's Law: computing power doubled every two years

from 1975 to 2012. Nowadays, every two and a half year.

Rapid growth of datasets: internet activity, genomics,

astronomy, censor networks, etc.

Data size trends: doubles every year according to

.

IDC

executive summary

Data grows faster than Moore's law. How do we scale the

training of a statistical model?

SCALING-UP
Keywords: High Performance Computing (HPC), parallel

computing

Scale-up means using a bigger machine. Can lead to huge
performance increase for medium scale problems

Very expensive, require specialized machines able to handle
lots of processors and memory.

Challenges: side effects.

An expression has a side effects if it modifies some state or has
an observable interaction with calling functions or the outside
world.

Solution? Locks to limit access to resources, which ensures

that only one thread is accessing a specific resource all at

once.

Some rare algorithms, such as , exploit side effects

to improve performance.

Hogwild!

Does not scale at some point to very big datasets.

WAIT... WHAT IS BIG? SOME FIGURES...
Big data examples:

facebook daily logs: 60TB
1000 genomes project: 200TB
Google web index: 10+ PB

Cost of 1Tb of storage: ~$35

Time to read 1Tb from disk: 3hours (100MB/s)

Data is streamed from the disk to the different layers of
memory.

Problem: disks cannot be read in parallel... Solution: Use
several disks.

Limited number of disks inside one machine? Use several
machines: distributed computing!

When one machine can no longer process or even store all
the data, use distributed computing.

At what data size distributed computing starts to be useful?
Very dependent on the task, the data quality, and the data
type

e.g. Full Movielens dataset, 22m ratings, 240k users, 635Mb.

SCALING-OUT

Keywords: distributed computing

Scale-out means using many small machines.

Uses commodity hardware: cheap, common architecture i.e.
processor + RAM + disk.

Problem: dealing with network computation adds so�ware
complexity.

Challenges:

Scheduling: How to split the work across machines? Must

consider network, data locality as moving data may be

very expansive.

Reliability: How to deal with failure? Commodity (cheap)

hardware fails more o�en. At Google, 1-5% hard drive

failure per year. 0.2% DIMM failure/year.

Uneven performance of the machines: some nodes

(stragglers) are slower than others.

PERFORMANCE MEASURES

How to evaluate the performance of a scaling? Let be the

time complexity of an algorithm using processing

elements.

Provides an indication of the effective utilization of all the

processing units.

Measures the benefits of using parallelism.

Strong scaling:

How to compute faster? Relevant when the task is CPU-

bound.

Fixed problem size, increased number of processing

elements.

In such case, speedup and efficiency can be used to measure

the performance gain and tune the number of processing

units.

Weak scaling:

How to compute using more data? Relevant when the task is
I/O-bound.

Problem size (workload) assigned to each processing
element stays constant. Additional processing elements are
used to solve a larger total problem.

In this case, efficiency does not make sense, as we assume a
constant workload.

TOOLS

In practice, so�wares such as or are in

charge of these problems.

Spark HadoopMR

They are distributed compute engines, i.e. so�wares that

ease the development of distributed algorithms.

They run on clusters, managed by a resource manager, such

as or YARN Mesos

In short, resource managers ensures that the different tasks

running on the cluster do not try to use the same resources

all at once.

HADOOP MAPREDUCE

Hadoop is older, more enterprise-grade codebase (e.g.
security with Kerberos)

Good for data crunching (e.g. data cleaning, ETL: Extract,
Transform, Load).

Problems: lots of disk I/O

For Machine Learning problems, this is a real problem as
iterative algorithms need to access such as gradient values,
parameters vector, etc. very o�en.

SPARK

HadoopMR is designed for acyclic data flow models while

Spark handles cyclic (e.g. iterative) data flows.

Advantage of Spark over HadoopMR ?

Use RAM, i.e. fast iterative computations

lower overhead for starting jobs

simple & expressive (scala, python + interactive shell)

higher level libraries (SparkSQL, SparkStreaming, MLlib,

GraphX)

Requires servers with more CPU and more memory (more

expensive), but still quite cheap compared to HPC.

ITERATION SPEED COMPARISON

LOGISTIC REGRESSION SPEED COMPARISON

SPARK STACK

MACHINE LEARNING

Most of the time, doing machine learning is roughly trying to
minimize a function.

Iterative algorithms: EM algorithms, gradient descents, etc.

Distribution is hard: Try to minimize the number of
communication rounds.

Less communication has a cost: slower convergence,
sometime bad precision (i.e. $1e^{-5})

MACHINE LEARNING

Begin the optimization with a low communication
algorithm, then use a batch algorithm.

At some point each iteration require a pass on the whole
dataset and a communication round.

In all case: you want to use RAM when using iterative
algorithms

ITERATIVE JOBS

BASIC SUPERVISED LEARNING PIPELINE

THANKS!

ANY QUESTION?

