
Continuous Integration INRIA
C++ Exercises

Vincent Rouvreau - https://sed.saclay.inria.fr ∗

February 28, 2017

Contents

C++ Exercises

1 Preamble

In this exercise, we will focus on the configuration of Jenkins for:

1. A simple aspect of C++ unit testing

2. An aspect of dynamic testing : source coverage

3. A demonstration of static analysis with cppcheck

To perform this C++ exercise, we rely on these development tools:

• A C++ compiler, for example GNU C++ or clang.

• A build process manager: CMake

• A testing framework: cppunit

• A static analysis tool: cppcheck

• Coverage analysis tools: gcov, lcov and gcvor.

• A testing framework: cppunit . . .

On Linux, BSD, MACOS X systems, suitable versions may simply be in-
stalled with the package manager (yum, apt, ...).
For example:

∗This practical tutorial has been originally written by Maurice Brémond, Gaëtan Harter
and David Parsons from SED INRIA Rhône-Alpes. I would like to thank them for their help
and support.

1

https://sed.saclay.inria.fr
http://sed.inrialpes.fr

Continuous Integration INRIA C++ Exercises

• On Fedora 21 and earlier systems, one may use the command:
sudo yum install cmake gcc-c++ cppunit-devel cppcheck gcov lcov

python-pip

• On Fedora 22 and later systems, one may use the command:
sudo dnf install cmake gcc-c++ cppunit-devel cppcheck gcov lcov

python-pip

• On recent Debian or Ubuntu systems:
sudo apt-get install cmake gcc-c++ libcppunit-dev cppcheck gcov

lcov python-pip

For gcovr, use:
sudo pip install gcovr

2 Unit testing

2.1 Local setup

Clone the git repository from INRIA forge and create your own
branch

First, you will create your personal git repository on the INRIA forge as a
branch of the main repository for the TPCISedSaclay project:

• Go to https://gforge.inria.fr/projects/tpcisedsaclay

• Click on the CODE SOURCE or SCM tab

• Click on Request a personal repository

• Back to the SCM tab, look for the command to access your personal
repository

WARNING : do not use the anonymous access (containing anon-
scm)

Then on a terminal, clone the content of your personal git repository. The
correct command should look like this:

git clone \

git+ssh://<yourforgelogin>@scm.gforge.inria.fr/gitroot/

tpcisedsaclay/users/<yourforgelogin>.git

cd <yourforgelogin>/cxx

Page 2

https://gforge.inria.fr/projects/tpcisedsaclay

Continuous Integration INRIA C++ Exercises

Project file tree

A minimal CMake project is present under the file tree:

<yourforgelogin>/cxx

|_ CMakeLists.txt

|_ cmake

| |_ TP.cmake

|_ Sphere.hpp

|_ Sphere.cpp

|_ bench.cpp

|_ tests

|_ CMakeLists.txt

|_ TestTP.hpp

|_ TestTP.cpp

|_ TestMain.cpp

This CMake project provides the framework needed to build and test a ver-
sionized, dynamic shared library named TP 1. The CMake configuration is spec-
ified in two CMakeLists.txt files:

• One under the main directory: the main CMakeLists.txt

• One under the tests directory

The API provided by this library is at this level composed by a single Sphere

class. The Sphere class offers an object constructor with the radius as param-
eter and a volume method.
A benchmark program named bench.cpp is also built and linked with the li-
brary. Although the computation is very simple, this benchmark program may
be used to compare the influence of some compiler optimization flags.

Check that you can build the project and run the test

On a Unix system :

mkdir -p build # Create a build directory

cd build

cmake .. # Create the build environment with CMake

make # Build the project

make test # Run the test

1TP stands for Travaux Pratiques in french

Page 3

Continuous Integration INRIA C++ Exercises

Run the benchmark

CMake provides pre-defined build configurations that may be chosen with the
CMAKE BUILD TYPE variable.
Among them we are going to consider:

• Debug build type which sets the debug flags (-g with GNU C++)

• Release build type which sets some optimization flags (-O3 -DNDEBUG

with GNU C++)

Once a directory has been given as argument to CMake it remains in a cache,
the CMakeCache.txt file in your build directory. This cache file is a text file
and may be edited by hand.

CMake variables may be set on the command line with -D arguments:

cmake .. -D<VARIABLE_NAME>=<VALUE>

The value remains in the cache file, so when a variable has been modified
once with a call to CMake, it is not necessary to define its value anymore on the
command line.
To configure our build to produce a Debug type build:

cmake .. -DCMAKE_BUILD_TYPE=Debug

make

./bench

For an optimized build, we change its configuration to:

cmake .. -DCMAKE_BUILD_TYPE=Release

make

./bench

Over this very simple computation, the benchmark time difference between
Debug and Release is not dramatic.
With GNU C++ compiler, we can go beyond -O3 optimization flag with the
fast-math option, which implies -funsafe-math-optimizations and may break
some of the requirements of IEEE and ANSI standards.
To pass a specific argument to the GNU C++ compiler, we use the variable CMAKE

CXX FLAGS. The arguments passed on the command line to this variable are
added to the other compiler arguments. In doubt with the generated specifica-
tion, one can use the argument VERBOSE=1 with make tool, in order to see all
the flags passed to the compiler.

Page 4

Continuous Integration INRIA C++ Exercises

cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_FLAGS=-ffast-math

make VERBOSE=1

./bench

You should see a difference on time.
Now, let’s keep this configuration in our build directory.

2.2 Jenkins setup

Log into the project’s Jenkins instance

1. Connect to the INRIA Continuous Integration Web portal : https://ci.inria.fr/.

2. Log in and click Dashboard in the top menu

3. As you have been added to project TPCISedSaclay, click on the Jenk-
ins button. You may be prompted to log into Jenkins, use the same
login/passwd as for the ci.inria.fr portal.

Running your first test with Jenkins:

• From our Jenkins dashboard page, click New Item in the menu on the
left

• Provide a name (<yourforgelogin> for instance) for this new item (avoid
spaces since it is likely to lead to errors) and select Freestyle project.

Git configuration :

• In the new item’s configuration page (which you will be redirected to after
clicking OK), choose Git as your Source Code Manager

• Copy the anonymous URL to your personal repository into the Reposi-
tory URL field:

https://scm.gforge.inria.fr/anonscm/git/tpcisedsaclay/users/<yourforgelogin>.git

An important step for the continuous integration setup is the build trigger.
A simple option is to choose to build periodically : this is suitable for some
nightly or weekly tests that may be time consuming and are not meant to be
launched after each commit, but this should be avoided for short periods.
In our case, we want the results to be displayed as soon as possible, so we choose
to launch the build after a post-commit hook 2:

2It is explained in ci.inria.fr FAQ documentation

Page 5

https://ci.inria.fr/
https://ci.inria.fr/tpcisedsaclay/
https://wiki.inria.fr/ciportal/FAQ#I_want_to_automatically_run_a_job_after_a_commit_.28using_Git_SCM.29

Continuous Integration INRIA C++ Exercises

• Click on Poll SCM

• In the Schedule field, cut and paste:

Leave empty. We don’t poll periodically, but need

polling enabled to let HTTP trigger work

Click on Save button.

create the post-commit hook on the INRIA forge server

For this, you can copy the following file:

$ ssh <yourforgelogin>@scm.gforge.inria.fr

$ cp /gitroot/tpcisedsaclay/users/vrouvrea.git/hooks/post-receive \

/gitroot/tpcisedsaclay/users/<yourforgelogin>.git/hooks/

And then modify the post-commit hook post-receive with your personal
repository:

#!/bin/sh

wget -q -O - --auth-no-challenge --no-check-certificate \

http://ci.inria.fr/tpcisedsaclay/git/notifyCommit?url=

https://scm.gforge.inria.fr/anonscm/git/tpcisedsaclay/users/<yourforgelogin>.git

2.3 Exercise 1

On the Jenkins dashboard, click on little triangle close to your newly created
item to populate the actions window.
Click on Configure button.
Add a new build step using Execute shell, where you inform Jenkins how
to build and test the project:

• You have to choose the Debug configuration for this build, this will be
needed for coverage as we will see later.
In the shell working directory (the result of the command /bin/pwd in
this shell) Jenkins has cloned your source directory.

Page 6

https://ci.inria.fr/tpcisedsaclay/

Continuous Integration INRIA C++ Exercises

• Then save the project and verify the configuration with a click on Build
Now in the menu on the left.

• In the Build History on the left, click on the last build (hopefully #1),
then select Console Output.

• You can also check the Test Result.

2.4 Exercise 2

First part

Edit the implementation of the Sphere class in the <yourforgelogin>/c++/src/Sphere.cpp
file and have a look at the code of the method Sphere::volume().

double Sphere::volume() const

{

return 4 * M_PI * pow (this->_radius, 3.) / 3.;

}

This is the method which is tested in the unique test of the library, and the
test is implemented in the file <yourforgelogin>/c++/src/tests/testTP.cpp.
Let’s imagine we want to improve the efficiency of the Sphere::volume()

method by pre-computing the value 4 * Math.PI / 3

TODO :

• Extract this value into a class data member.

• Run the benchmark. This may show only a very, very minimal improve-
ment !

• Run the test.

The test may still be successful : this may depend on your hardware and com-
piler.
Let’s assume it is successful : do not forget to commit your modifications.

git commit -a -m "precomputation of 4pi/3"

git push

The test should now fail on Jenkins.
Here is the output you can see on Jenkins console:

Page 7

Continuous Integration INRIA C++ Exercises

+ make test

Running tests...

Test project /builds/workspace/mb-cxx/build

Start 1: TestVolume

1/1 Test #1: TestVolume***Failed

0.00 sec

0% tests passed, 1 tests failed out of 1

Total Test time (real) =

0.00 sec

The following tests FAILED:

1 - TestVolume (Failed)

Second part

The -funsafe-math-optimizations implied by -ffast-math allows for re-
ordering of floating points operations and this may lead to different results.
The direct check of equality of floating point numbers with the == operator
should be avoided : so we can add a warning (only if understood by the com-
piler) in order not to reproduce this kind of error.
Since version 4.6, GNU C++ provides this warning -Wfloat-equal. With porta-
bility in mind, before adding the flag to the compiler command, we need to
check that the compiler accepts it.
With CMake, there is no built-in function for this operation, but that can be
achieved with a simple macro:

include(TestCXXAcceptsFlag)

macro(add_cxx_compiler_flag _flag)

string(REPLACE "-" "_" _flag_var ${_flag})

check_cxx_accepts_flag("${_flag}" CXX_COMPILER_${_flag_var}_OK)

if (CXX_COMPILER_${_flag_var}_OK)

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${_flag}")

endif()

endmacro()

This macro is provided in the TP.cmake module file under cmake directory.
To load this TP module, you need to modify the CMakelists.txt file:

Page 8

Continuous Integration INRIA C++ Exercises

• Set the CMAKE MODULE PATH to this directory:

set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/cmake)

• Load the module TP. Beware : this should be done before using the macro:

include(TP)

On Jenkins side, compiler warnings can be checked in the Post build
Action step of your build project.

TODO :

• In the CMake configuration file, CMakeLists.txt, include the TP module.

• With the provided CMake TP macro, add the compiler warning to the
CMake configuration,

• Verify that the warning is printed during compilation.

• In Jenkins :

– Add the scan for compiler warnings in the Post build Action of
your project.

– In the Execute shell section, comment the line make test. This is
necessary because as the test is failing, the parsing will not be done
by Jenkins.

• Commit the code in order to check the parsing done by Jenkins

• If it goes well, then uncomment the make test line.

• Modify the appropriate test in TestTP.cpp so small rounding differences
do not cause errors.
cppunit provides a macro for this:

CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, actual, delta)

• Once it is OK and the warning has gone, commit.

• Rebuild on Jenkins to check.

Page 9

Continuous Integration INRIA C++ Exercises

3 Code coverage

Here we get a taste of some dynamics analysis. After the tests are executed, the
code coverage tools (mainly gcov) show which lines of code have been involved
in the execution.

3.1 Gcov, lcov, gcovr

Coverage with gcov needs the GNU C++ compiler and the -fprofile-arcs and
-ftest-coverage compilation options.
gcov generates raw output. We are going to use the lcov utility for the post-
processing and the generation of html pages and the gcovr utility in order to
present parseable results to Jenkins.
A CMake function add test with coverage is provided in the TP module to
simplify the whole setup.
This function, when used in place of the standard CMake function add test

function, provides coverage support through a new make coverage target.
Remark :

• You can see all make targets using : make help.

3.2 Exercise 3

TODO :

• Install coverage for the test routine TestVolume. In the CMake configura-
tions files, you need to set the coverage flags for the build of the library
and the test file with the add cxx compiler flag.

• Run a test with make coverage

• Open the file index.html under TestTP testVolume directory with a
Web browser to see the result

• On the Jenkins side :

– Modify the build process in Execute shell to add coverage target

– In Post-Build Action, add Publish Cobertura Report with the
Cobertura xml report pattern set to : **/coverage.xml

• Commit

• Generate and visualize the corresponding coverage report.

3.3 Exercise 3bis (optional)

This is optional, if you prefer, go directly to the static analysis section in page 9.
Let’s check if it works with more than one C++ class. Use another development
branch to add a new class Alphabet to our project:

Page 10

Continuous Integration INRIA C++ Exercises

git merge origin/alpha-cxx

You should retrieve the following file tree :

<yourforgelogin>/cxx

|_ CMakeLists.txt

|_ cmake

| |_ TP.cmake

|_ Alphabet.hpp

|_ Alphabet.cpp

|_ Sphere.hpp

|_ Sphere.cpp

|_ bench.cpp

|_ tests

|_ CMakeLists.txt

|_ TestTP.hpp

|_ TestTP.cpp

|_ TestMain.cpp

TODO :

• Resolve git merge conflicts (keep the flags you added, use the new library
generation dependency)

• Generate and visualize the corresponding coverage report

• Improve the test coverage and commit.

4 Static analysis

With our library, one can check that the following code is valid but it may not
be what the programmer intended:

Sphere s1(.1);

Sphere s2(.2);

std::pair<Sphere, Sphere> p(s1,2);

As the implicit conversion is allowed on the Sphere constructor, the pair of
Sphere objects p is composed of the Sphere s1 and the Sphere(2) which is
not the same as a pair of s1 and s2. In the case of a typo in the code source,
this may certainly lead to bugs.
A static code analysis may help in the discovery of those potentials bugs.

Page 11

Continuous Integration INRIA C++ Exercises

4.1 cppcheck

cppcheck is a command-line tool dedicated to static C/C++ code analysis. It
tries to detect bugs that your C/C++ compiler does not see. It is versatile,
and can check non-standard code including various compiler extensions, inline
assembly code, etc. Its internal preprocessor can handle includes, macros, and
several preprocessor commands.
Applying this tool on our project, we get an analysis report using the command:

cppcheck <your source directory> -f -q --enable=style

Beware : The results we obtain depend on the version of cppcheck !
On the virtual machine configured for ci.inria.fr/tpcisedsaclay, cppcheck version
1.61 is installed. It is not the latest version.

4.2 Exercise 4

TODO :

• Test the command given below on your project locally

• Install this check on Jenkins :

– Modify the Build section Execute shell field to call cppcheck

– Add a Post-build Action for publishing cppcheck results

Beware : change the cppcheck command argument so it generates an
XML output (use --xml option) and redirect the standard error to a file
named cppcheck-result.xml.
Jenkins can read this file if configured properly and if the appropriate
post-build action is set.

• Fix some warnings and commit.

Page 12

