
Continuous Integration INRIA
Java Exercises

Vincent Rouvreau - https://sed.saclay.inria.fr ∗

February 28, 2017

Contents

Java Exercises

1 Preamble

To go through this exercise, you will need to install :

1. Git (sudo apt-get install git — sudo yum install git)

2. A JDK (sudo apt-get install openjdk-7-jdk — sudo yum install java-1.7.0-
openjdk)

3. Maven (sudo apt-get install maven — sudo yum install apache-maven)

2 Unit testing

2.1 Local setup

Clone the git repository from INRIA forge and create your own
branch

First, you will create your personal git repository on the INRIA forge as a
branch of the main repository for the TPCISedSaclay project:

• Go to https://gforge.inria.fr/projects/tpcisedsaclay

• Click on the CODE SOURCE or SCM tab

• Click on Request a personal repository

∗This practical tutorial has been originally written by Maurice Brémond, Gaëtan Harter
and David Parsons from SED INRIA Rhône-Alpes. I would like to thank them for their help
and support.

1

https://sed.saclay.inria.fr
https://gforge.inria.fr/projects/tpcisedsaclay
http://sed.inrialpes.fr

Continuous Integration INRIA Java Exercises

• Back to the SCM tab, look for the command to access your personal
repository

WARNING : do not use the anonymous access (containing anon-
scm)

Then on a terminal, clone the content of your personal git repository. The
correct command should look like this:

git clone \

git+ssh://<yourforgelogin>@scm.gforge.inria.fr/gitroot/

tpcisedsaclay/users/<yourforgelogin>.git

cd <yourforgelogin>/cxx

Project file tree

You should have retrieved the following file tree:

<yourforgelogin>/java

|_ pom.xml

|_ src

|_ main

| |_ java

| |_ fr

| |_ inria

| |_ sed

| |_ Sphere.java

|_ tst

|_ java

|_ fr

|_ inria

|_ sed

|_ TestSphere.java

The project is made up of :

• A Maven Project Object Model file named pom.xml

• A file Sphere.java implementing the class Sphere

• A file SphereTest.java implementing its test class SphereTest.

Check that you can build the project

$ pwd

yourpath/<yourforgelogin>/java

$ mvn package

Page 2

Continuous Integration INRIA Java Exercises

You should see these lines (among others) :

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

Testing your code locally

Run the (single) test

$ mvn test

You should see something like

--

T E S T S

--

Running fr.inria.sed.SphereTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.069 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

2.2 Jenkins setup

Log into the project’s Jenkins instance

1. Connect to the INRIA Continuous Integration Web portal : https://ci.inria.fr/.

2. Log in and click Dashboard in the top menu

3. As you have been added to project TPCISedSaclay, click on the Jenk-
ins button. You may be prompted to log into Jenkins, use the same
login/passwd as for the ci.inria.fr portal.

Running your first test with Jenkins:

Page 3

https://ci.inria.fr/

Continuous Integration INRIA Java Exercises

• From our Jenkins dashboard page, click New Item in the menu on the
left

• Provide a name (<yourforgelogin> for instance) for this new item (avoid
spaces since it is likely to lead to errors) and select Maven project.

Git configuration :

• In the new item’s configuration page (which you will be redirected to after
clicking OK), choose Git as your Source Code Manager

• Copy the anonymous URL to your personal repository into the Reposi-
tory URL field:

https://scm.gforge.inria.fr/anonscm/git/tpcisedsaclay/users/<yourforgelogin>.git

An important step for the continuous integration setup is the build trigger.
A simple option is to choose to build periodically : this is suitable for some
nightly or weekly tests that may be time consuming and are not meant to be
launched after each commit, but this should be avoided for short periods.
In our case, we want the results to be displayed as soon as possible, so we choose
to launch the build after a post-commit hook 1:

• Click on Poll SCM

• In the Schedule field, cut and paste:

Leave empty. We don’t poll periodically, but need

polling enabled to let HTTP trigger work

Click on Save button.

create the post-commit hook on the INRIA forge server

For this, you can copy the following file:

$ ssh <yourforgelogin>@scm.gforge.inria.fr

$ cp /gitroot/tpcisedsaclay/users/vrouvrea.git/hooks/post-receive \

/gitroot/tpcisedsaclay/users/<yourforgelogin>.git/hooks/

1It is explained in ci.inria.fr FAQ documentation

Page 4

https://ci.inria.fr/tpcisedsaclay/
https://wiki.inria.fr/ciportal/FAQ#I_want_to_automatically_run_a_job_after_a_commit_.28using_Git_SCM.29

Continuous Integration INRIA Java Exercises

And then modify the post-commit hook post-receive with your personal
repository:

#!/bin/sh

wget -q -O - --auth-no-challenge --no-check-certificate \

http://ci.inria.fr/tpcisedsaclay/git/notifyCommit?url=

https://scm.gforge.inria.fr/anonscm/git/tpcisedsaclay/users/<yourforgelogin>.git

2.3 Jenkins build configuration

In the Build section :

• Change the root POM path to java/pom.xml

• Type test in Goals and options section.

Save and run

• Click Save at the bottom of the page

• Click Build Now in the menu on the left.

Check the output

In the Build History on the left :

• Click on the last build (hopefully #1)

• Select Console Output

• You can also check the Test Result.

2.4 Exercise 1

Have a look at the code of the method Sphere::computeVolume().
To do so, edit java/src/main/java/fr/inria/sed/Sphere.java.
The code should be like that :

public double computeVolume1() {

return 4 * Math.PI * Math.pow(radius_, 3) / 3;

}

We might want the value : 4 * Math.PI / 3 to be computed once and for
all.

• Extract this value into a class data member

Page 5

Continuous Integration INRIA Java Exercises

• Run the test again. It should fail. Here is the output you should get :

--

T E S T S

--

Running fr.inria.sed.SphereTest

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.076 sec <<< FAILURE!

Results :

Failed tests:

testComputeVolume(fr.inria.sed.SphereTest):

expected:<14.137166941154069> but was:<14.137166941154067>

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

• Check that tests fail on Jenkins instance.

Hint : Have you commited and pushed your changes ?

2.5 Exercise 2

Why does the test in SphereTest.java fail ?2

Our response to this issue strongly depends on what kind of application we are
working on :

• In some cases, we want to be aware that something has changed, even
when the change is the tiniest. In that case, the test we already have is
just what we want.

• In other cases, we need not worry about such a small difference and hence
do not want to be bothered by tests complaining.

• Find a way to modify the appropriate test in SphereTest.java so small
rounding differences do not cause errors.

• Check that tests pass on CI.

3 Code Coverage

At this stage, all our tests pass. But what does that mean regarding our appli-
cation ?

2This is because of floating point arithmetics rounding errors

Page 6

Continuous Integration INRIA Java Exercises

Not much you may say, but can you quantify it and will you be able to tell on
a real project ?
This is when test coverage becomes handy.

3.1 Run test coverage

Run the following maven command :

$ pwd

yourpath/<yourforgelogin>/java

$ mvn cobertura:cobertura

Cobertura should have produced test coverage results in the following directory
:
java/target/site/cobertura

Use your favorite Web browser (firefox, chrome, iceweasel, ...) to visu-
alize the generated results of the test coverage :

$ firefox target/site/cobertura/index.html &

3.2 Exercise 3

• Populate your tests to achieve 100

3.3 Integrate Cobertura to your reporting local Website

Add the following to the file pom.xml

<reporting>

<plugins>

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>cobertura-maven-plugin</artifactId>

<version>2.7</version>

</plugin>

</plugins>

</reporting>

The report generation is now included in the build life cycle (site phase).

• Generate the report :

Page 7

Continuous Integration INRIA Java Exercises

$ pwd

yourpath/<yourforgelogin>/java

$ mvn site

• Use your favorite Web browser (firefox, chrome, iceweasel, ...) to
visualize the generated report :

$ firefox target/site/project-reports.html &

3.4 Exercise 3bis - Coverage Report on Jenkins

Adding build feedback

One of the good things with Jenkins is its ability to nicely present your test
results.
The tools we used to run tests and code quality checks have been selected based
on the availability of the corresponding Jenkins plugins.

Add coverage report

• Go back to your item’s configuration page (use the menu on the left)

• In the Build section, add to the Goals and options field :

cobertura:cobertura -Dcobertura.report.format=xml

• Click on Add post-build action and select Publish Cobertura Cov-
erage Report from the drop-down menu

• The Cobertura xml report pattern is :

**/target/site/cobertura/coverage.xml (it is the example provided

below the field)

• Save and Run the test

• Check the output : in the Build History on the left, click on the last
build, you should have a new entry named Coverage Report, have a
look at it

3.5 Add a new class to our project

Let’s add a new class Alphabet and its test class AlphabetTest to our project
:

Page 8

Continuous Integration INRIA Java Exercises

$ git merge origin/alpha-java

You should have the following file tree :

<yourforgelogin>/java

|_ pom.xml

|_ src

|_ main

| |_ java

| |_ fr

| |_ inria

| |_ sed

| |_ Alphabet.java

| |_ Sphere.java

|_ tst

|_ java

|_ fr

|_ inria

|_ sed

|_ AlphabetTest.java

|_ SphereTest.java

Exercise 4

• Generate and visualize the corresponding coverage report

• Make what changes are necessary to achieve 100% test coverage
Hint : you may not need any additional tests ;)

• Check that you get the same results on Jenkins.

3.6 Stylecheck

Run a style checker

Let’s try and run a style checker :

$ pwd

yourpath/<yourforgelogin>/java

$ mvn checkstyle:checkstyle

Then use your favorite Web browser (firefox, chrome, iceweasel, ...) to
visualize the generated checkstyle report :

Page 9

Continuous Integration INRIA Java Exercises

$ firefox target/site/checkstyle.html

We get plenty of errors with the default style sun checks.xml. Indeed, our
coding style is closer to Google style than it is to Sun style.

Run Google style checker

Try running with Google checks (provided by the plugin)

$ pwd

yourpath/<yourforgelogin>/java

$ mvn checkstyle:checkstyle -Dcheckstyle.config.location=google_checks.xml

NOTE : this can also be achieved by adding the following lines to your pom.xml
:

<properties>

<checkstyle.config.location>google_checks.xml</checkstyle.config.location>

</properties>

It is getting better but we might want to make a few changes to this default
behavior.

Exercise 5

Make your own custom style checker

• Retrieve a local copy of Google check file (name it custom checks.xml)

$ wget -O custom_checks.xml http://tinyurl.com/z9pfdlx

• Tell Maven to use this configuration file by changing the value of variable
checkstyle.config.location:

$ pwd

yourpath/<yourforgelogin>/java

$ mvn checkstyle:checkstyle -Dcheckstyle.config.location=custom_checks.xml

• Modify the file custom checks.xml so that it accepts single character
parameter names.

Page 10

Continuous Integration INRIA Java Exercises

• You may also consider removing trailing underscores from data members
or amending checkstyle.xml

Integrate checkstyle to your reporting local Website

Add the following to the file pom.xml

<reporting>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-checkstyle-plugin</artifactId>

<version>2.16</version>

<configuration>

<configLocation>custom_checks.xml</configLocation>

</configuration>

</plugin>

</plugins>

</reporting>

The check style report is now included in the build life cycle (site phase).

• Generate the report :

$ pwd

yourpath/<yourforgelogin>/java

$ mvn site

• Use your favorite Web browser (firefox, chrome, iceweasel, ...) to
visualize the generated report :

$ firefox target/site/project-reports.html &

Exercise 5bis - Checkstyle Report on Jenkins

• Go back to your item’s configuration page.

• In the Build section,

– Add to the Goals and options field :
checkstyle:checkstyle -Dcheckstyle.config.location=custom checks.xml

– Or change all the Goals and options field to : site

Page 11

Continuous Integration INRIA Java Exercises

• In the Build Settings section, check the Publish Checkstyle analysis
results box.

• Save and run the test.

• Check the output : in the Build History on the left, click on the last
build, you should have a new entry named Checkstyle Warnings. Have
a look at it.

Page 12

