
Unikernels?
Thomas Gazagnaire

@samoht [GitHub]
@eriangazag [Twitter]

http://gazagnaire.org/pub/2015.12.loops.pdf

http://gazagnaire.org/pub/2015.12.loops.pdf

About me...

• PhD at INRIA in Distributed Systems

• Citrix on Xen/Xenserver

• OCamlPro on Opam and OCaml tooling

• University of Cambridge on MirageOS and Irmin

• recently Unikernel Systems

Unikernels

• based on library OS

• contains only what is needed

• single process

• single address space

• runs everywhere
Hardware

Hypervisor
(optional)

Unikernels HaLVM
Rumprun...

Traditional OS

• Multiple users

• Multiple process

• Multiple purposes

Hardware

Hypervisor
(optional)

OS Kernel

System libraries

Language runtime

Application code

Configuration

Traditional OS

Traditional OS

True, linux is monolithic, and I agree that microkernels are
nicer... As has been noted (not only by me), the linux kernel is
a minuscule part of a complete system: Full sources for linux

currently runs to about 200kB compressed. And all of that
source is portable, except for this tiny kernel that you can

(provably: I did it) re-write totally from scratch in less than a
year without having /any/ prior knowledge.

– Linus Torvalds, 1992

The Kernel

Traditional OS
The Kernel

Currently Linux has over 25 million lines of code...

... and Windows has 50 million.

Traditional OS

OS distributions contain a lot of code!

• Debian 5.0: 65 million lines of code

• OSX 10.4: 85 million lines of code

The System libraries

Traditional OS
The System Libraries

kernel

libc

libz

iconv

openGL

libstd++ libgcc

libgmp libtls

gtk

Application

Traditional OS
The System Libraries

kernel

libc

libz

iconv

openGL

libstd++ libgcc

libgmp libtls

gtk

Application

Traditional OS
(lack?) of Language Runtime

Debian, in 2013

openSSL:
• 500k loc
• used by 2/3 of web servers
• 29 CVE in 2015

Traditional OS

Your code

???

Traditional OS

• current software stack rely 100M+ lines of code

• most of which is written in C

• and a long time ago

• hard to re-use in different contexts

It's a credit to our civilisation that we managed to build
"working" systems, but can we do better?

Summary

Unikernels
What?

Unikernels

• based on library OS

• contains only what is needed

• single process

• single address space

• runs everywhere
Hardware

Hypervisor
(optional)

Unikernels HaLVM
Rumprun...

Library OS

• Long line of research on library OS (since the 60s')

• Consider kernel modules as normal libraries. Use same
language and tools than user-space libraries.

• Modern compilers/type-systems can do magic:

• whole system optimisation: reduce size and increase speed

• static analysis: remove bugs

the basis

• Extreme specialisation: embedded systems techniques for
general applications

• few things made that easier in the last few years:

• pervasive use of Hypervisors

• upstream efforts to turn OS into libraries

Library OS
the basis

Hypervisors

• Use hardware isolation extensions (when available)

• Something that creates a virtual machine

• Can run on bare-metal (Xen) or hosted (VMware, VBox, KVM)

• Power the modern "Cloud" (EC2)

• Initial industry pull (mid-00s') was to optimise hardware
utilisation

the enablers

The 1st generation of unikernels (10s') MirageOS and HaLVM are built on:

• A minimal OS for Xen: mini-OS

• A stable device driver interface

They have now reached more platforms since then: bare-metal, browsers, ...

Hypervisors
the enablers

OS distributions

Recent efforts by OS distros:

• The rump kernel project turns FreeBSD kernel modules into
libraries. This is has been integrated upstream and is used by the
Rumprun unikernels.

• LKL is trying to turn the Linux kernel into a set of libraries. Very
recent project, not sure where this is going (possible "issues" with
the GPL)

are turning into unikernels

Unikernels
Benefits?

Unikernels

Improved security
• Small attack surface: static linking and dead-code elimination

removes unnecessary services. No shellshock!

• Less exposure to general attack

• High-level languages, with static and runtime analysis

Benefits

Unikernels

Increased speed
• Fast boots (see Jitsu: "Just-In-Time Summoning of Unikernels): can

boot in less than a TCP packet RTT

• More predictable performance (fewer scheduler layers): lower
latencies

Benefits

Unikernels

Efficient resource usage
• Reduced memory footprint, cheap to host on the "Cloud": typical

stateless MirageOS app: ~10/20MB of RAM

• Small disk-footprint: DNS server is MirageOS is ~100KB.

• Reduced need for disk-space

Benefits

Unikernels

Immutable Infrastructure
• Can statically link data in your application

• Small enough to be stored in Git

• Enable a new model for updates and upgrade

• Can be sealed: once built, can enable hardware memory-
protection so it is really immutable

Benefits

Unikernels
Benefits

Small Secure Fast

Pick all three!

Unikernels

• Maybe you really want to use all the stack

• Maybe you don't want to rewrite all the libraries in your
favorite language

• Maybe you don't know which tool to use to manage the
build, ship and run your 100s of unikernels

At a cost

Unikernels

• Maybe you really want to use all the stack

• fair enough

• you might still want to use similar techniques on
desktop, e.g. QubeS+MirageOS

At a cost

Unikernels

• Maybe you don't want to rewrite all the libraries in your
favorite language

• why not, it's fun!

• upstream OS distribution efforts help, i.e. rump kernels

At a cost

Unikernels

• Maybe you don't know which tool to use to manage the
build, ship and run your 100s of unikernels

• the tooling is indeed lacking

• there is hope...

At a cost

Unikernels
and tooling

Unikernels are at the stage that Linux containers were
three years ago before Docker

• Few users
• Hard to build
• Hard to ship
• Hard to run

Clearly this needs to be fixed for widespread use...

Unikernels
and tooling

Unikernels
Panorama

Panorama
Project Language Hypervisor

ClickOS C/C++ Xen

Clive Go bare-metal

Drawbridge .NET Microsoft picoprocess

HaLVM Haskell Xen

IncludeOS C++ Xen

LING Erlang Xen

MirageOS OCaml Xen/Unix

OSv Java Xen

Rumprun POSIX C bare-metal, Xen, KVM

Runtime.js Javascript KVM

http://unikernel.org/projects/

MirageOS
• Use OCaml

• Project started in 2007 with
Anil Madhavapeddy's PhD

• memory and type-safe
network and storage stack
from device drivers to TLS

• ~100 OCaml libraries

• compile to Unix process, Xen
VM, in-browser JavaScript

https://mirage.io

https://mirage.io

Rumprun
• use rump kernels, the

FreeBSD library OS

• Project started in 2012 with
Antti Kantee's PhD

• compile POSIX applications:
useful to port legacy code

• limitations:
• no forks
• build system scripts should

support cross-compilation

http://rumpkernel.org

http://rumpkernel.org

opam-rumprun
https://github.com/mato/opam-rumprun

Experiment to use MirageOS and rumprun

• opam repository with patched packages
• can run the modified packages (41) an any rump

kernel support platform, including:
• bare metal (including ARM boards)
• KVM

• including the pure-OCaml TLS stack

in the process of being upstreamed.
see: https://github.com/mirage/mirage/issues/479

https://github.com/mato/opam-rumprun
https://github.com/mirage/mirage/issues/479

MirageOS + TLS + Bitcoins
https://owme.ipredator.se

https://owme.ipredator.se

MirageOS/rumpkernels + DNS
http://www.skjegstad.com/blog/categories/jitsu/

http://www.skjegstad.com/blog/categories/jitsu/

http://www.skjegstad.com/blog/categories/jitsu/

MirageOS/Git+browser
http://roscidus.com/blog/blog/2015/04/28/cuekeeper-gitting-things-done-in-the-browser/

http://roscidus.com/blog/blog/2015/04/28/cuekeeper-gitting-things-done-in-the-browser/

Merci pour votre attention!

Credits

Dan Nanni, Interesting facts about Debian Linux
http://xmodulo.com/interesting-facts-about-debian-linux.html

Justin Cormack, The Road to Unikernels
http://roadtounikernels.myriabit.com/

Garrett Smith, Rainbows and Unikernels
https://www.youtube.com/watch?v=cUvNths_5RA

Adam Wick, Unikernels: Who, What, Where, When, Why
https://www.youtube.com/watch?v=oHcHTFleNtg

https://mirage.io/ http://unikernel.org

http://xmodulo.com/interesting-facts-about-debian-linux.html
http://roadtounikernels.myriabit.com/
https://www.youtube.com/watch?v=cUvNths_5RA
https://www.youtube.com/watch?v=oHcHTFleNtg
https://mirage.io/
http://unikernel.org

