Unikernels?

Thomas Gazagnaire

@samoht [GitHub]
@eriangazag | Twitter]

http://gazagnaire.org/pub/2015.12.1o0ps.pdf

http://gazagnaire.org/pub/2015.12.loops.pdf

About me...

PhD at INRIA in Distributed Systems

Citrix on Xen/Xenserver

OCamlPro on Opam and OCaml tooling
University of Cambridge on MirageOS and Irmin

recently Unikernel Systems

Unikernels

based on library OS
Unikernels

contains only what is needed

single process .
JEP Hypervisor

single address space (optional)

runs everywhere

Hardware

Traditional OS

Configuration

Application code

Language runtime

* Multiple users System libraries

* Multiple process OS Kernel

* Multiple purposes

Hypervisor AKVM
(optional) D¢er

Hardware

Traditional OS

Traditional OS

The Kernel

True, linux i1s monolithic, and | agree that microkernels are
nicer... As has been noted (not only by me), the linux kernel is
a minuscule part of a complete system: Full sources for linux

currently runs to about 200kB compressed. And all of that

source is portable, except for this tiny kernel that you can
(provably: | did it) re-write totally from scratch in less than a
year without having /any/ prior knowledge.

— Linus Torvalds, 1992

Traditional OS

The Kernel

Currently Linux has over 25 million lines of code...

... and Windows has 50 million.

Traditional OS

The System libraries

OS distributions contain a lot of code!
e Debian 5.0: 65 million lines of code

e OSX 10.4: 85 million lines of code

Traditional OS

The System Libraries

kernel

Traditional OS

The System Libraries

- kernel . I

Traditional OS

(lack?) of Language Runtime

openSSL:
* 500k loc

* used by 2/3 of web servers
e 20 CVE In 2015

Debian, in 2013

Traditional OS

Your code

077

Traditional OS

Summary
e current software stack rely 100M+ lines of code
* most of which is written in C
e and a long time ago

e hard to re-use In different contexts

[t's a credit to our civilisation that we managed to build
‘working" systems, but can we do better?’

Unikernels

What?

Unikernels

based on library OS
Unikernels

contains only what is needed

single process .
JEP Hypervisor

single address space (optional)

runs everywhere

Hardware

Library OS

the basis

* Long line of research on library OS (since the 60s')

e Consider kernel modules as normal libraries. Use same
language and tools than user-space libraries.

* Modern compilers/type-systems can do magic:
* whole system optimisation: reduce size and increase speed

* static analysis: remove bugs

Library OS

the basis

* Extreme specialisation: embedded systems techniques for
general applications

* few things made that easier in the last few years:
* pervasive use of Hypervisors

* upstream efforts to turn OS into libraries

HYPEervisors

the enablers

Use hardware isolation extensions (when available)
Something that creates a virtual machine

Can run on bare-metal (Xen) or hosted (VMware, VBox, KVM)
Power the modern "Cloud" (EC2)

Initial industry pull (mid-00s') was to optimise hardware
utilisation

HYPErvisors

the enablers

The 1st generation of unikernels (10s') MirageOS and HaLVM are built on:
A minimal OS for Xen: mini-OS

e A stable device driver interface

They have now reached more platforms since then: bare-metal, browsers, ...

OS distributions

are turning into unikernels

Recent efforts by OS distros:

* The rump kernel project turns FreeBSD kernel modules into

libraries. This is has been integrated upstream and is used by the
Rumprun unikernels.

* LKL is trying to turn the Linux kernel into a set of libraries. Very

recent project, not sure where this is going (possible "issues” with
the GPL)

Unikernels

Benefits?

Unikernels

Benefits

Improved security

* Small attack surface: static linking and dead-code elimination
removes unnecessary services. No shellshock!

* |ess exposure to general attack

* High-level languages, with static and runtime analysis

Unikernels

Benefits

Increased speed

* Fast boots (see Jitsu: "Just-In-Time Summoning of Unikernels): can
boot in less than a TCP packet RTT

* More predictable performance (fewer scheduler layers): lower
latencies

Unikernels

Benefits

—fficient resource usage

* Reduced memory footprint, cheap to host on the "Cloud”: typical
stateless MirageOS app: ~10/20MB of RAM

o Small disk-footprint: DNS server is MirageOS is ~100KB.

* Reduced need for disk-space

Unikernels

Benefits

Immutable Infrastructure

* Can statically link data in your application
* Small enough to be stored in Git
* Enable a new model for updates and upgrade

* Can be sealed: once built, can enable hardware memory-
protection so it is really immutable

Unikernels

Benefits

Small Secure Fast

Pick all three!

Unikernels

At a cost

* Maybe you really want to use all the stack

* Maybe you don't want to rewrite all the libraries in your
favorite language

* Maybe you don't know which tool to use to manage the
build, ship and run your 100s of unikernels

Unikernels

At a cost

 Maybe you really want to use all the stack
* fair enough

* you might still want to use similar technigques on
desktop, e.g. QubesS+MirageOS

Unikernels

At a cost

* Maybe you don't want to rewrite all the libraries in your
favorite language

* why not, it's fun!

* upstream OS distribution efforts help, i.e. rump kernels

Unikernels

At a cost

* Maybe you don't know which tool to use to manage the
build, ship and run your 100s of unikernels

* the tooling is indeed lacking

* there is hope...

Unikernels

and tooling

Unikernels are at the stage that Linux containers were
three years ago betore Docker

e Few users
 Hard to build
 Hard to ship
e Hard to run

Clearly this needs to be fixed for widespread use...

Unikernels

and tooling

& Solomon Hykes X Follow

"Wouldn't it be cool if we could deploy and
manage unikernels with Docker?" Yes, yes it
would! #dockercon

doofSA&RAE

Unikernels

Panorama

Panorama

http://unikernel.org/projects/

Project Language Hypervisor
ClickOS C/C++ Xen
Clive Go bare-metal
Drawbridge NET Microsoft picoprocess
HalLVM Haskell Xen
IncludeOS C++ Xen
ING Erlang Xen
MirageOS OCaml Xen/Unix
ONYY Java Xen
Rumprun POSIX C bare-metal, Xen, KVM
Runtime.|s Javascript KVM

MirageOS

Use OCaml|

https://mirage.io

nraph O

MIRAGE OS " %= # Ouwgn Commmsy -
memory and type-safe o L L o A o A IO A
network and storage stack g e deee i e b et v e
from device drivers to TLS

Project started in 2007 with
Anil Madhavapeddy's PhD

~100 OCaml libraries

compile to Unix process, Xen
VM, in-browser JavaScript

https://mirage.io

Rumprun

use rump kernels, the
FreeBSD library OS

Project started in 2012 with
Antti Kantee's PhD

compile POSIX applications:

useful to port legacy code

limitations:
e Nno forks

e build system scripts should
support cross-compilation

http://rumpkernel.org

Shortcuts 1o Wikl
FAQ
RUMP KERNELS —
Repositories
Getting started

*You can make an omeletie without breaking the
kiichenr™ News (vis Twitter)

Rump kermels enable you 10 build the software stack you need without forcing you 10 reinvent the
wheels. The key observation is that a software stack needs driver-ike components which are
conventionally tightly-knit into operating systems — even if you do not desire the limitations and
infrastructure overhead of a given OS, you do need drivers.

We solve the problem by providing free, reusable, componentized, kemel quality drivers such as file
systems, POSIX system calls, PCl device drivers and TCP/IP and SCSI protocol stacks. As a
production-ready example, we offer the Rumprun unikernel, which clocks in at a few thousand lines
of code plus rump kernel components, and supports POSIXY software directly on both raw hardware
and cloud hypervisors such as KVM and Xen. Examples of Rump kemels integrated into 3rd party
platforms also exist.

The article Rise and Fall of the Operating System provides an extended high-level motivation for
rump kernels. The book Design and Implementation of the Anykernel and Rump Kernels gives a
technical description of the fundamental operating principles and terminclogy. Further information is
available on the wiki or ineractively via the community. You can also hire consultants for
commercial support.

http://rumpkernel.org

opam-rumprun

https://github.com/mato/opam-rumprun

Experiment to use MirageOS and rumprun

* opam repository with patched packages

* can run the modified packages (41) an any rump
kernel support plattorm, including:
* pbare metal (iIncluding ARM boards)
e KVM

* including the pure-OCaml TLS stack

in the process of being upstreamed.
see: https.//github.com/mirage/mirage/issues/479

https://github.com/mato/opam-rumprun
https://github.com/mirage/mirage/issues/479

MirageOS + TLS + Bitcoins

hittps://owme.lpredator.se

ownme.ipredator.se

You have reached the BTC
Pinata.

BTC Pinata knows the private key to the bitcoin address
183XuXTTgnfYfKcHbI4s52ZeF46a49Pnihdh. If you break the Pinata, you get to keep
what's inside.

Here are the rules of the game:
¢ You can connect to port 10000 using TLS. Pifilata will send the key and hang

« You can connect to port 10001 using TCP. Pinata will immediately close the

connection and connect back over TLS to port 40001 on the initiating host,
send the key, and hang up.

¢« You can connect to port 10002 using TCP. Pifiata will initiate a TLS
ha lient, send the key over TLS, and

handshake over that channel serv

—

g as a ¢©

&

hang up.

And here's the kicker: in both the client and server roles, Pinata requires the
other end to present a certificate. Authentication is performed using standard
path validation with a single certificate as the trust anchor. And no, you can't

have the certificate key.

It follows that it should be impossible to successfully establish a TLS

connection as long as Pinata is working properly. To get the

18, you have to

Before you ask: yes, Pinata will talk to itself and you can enjoy watching it do

https://owme.ipredator.se

MirageOS/rumpkernels + DNS

ww.litsu.v0.no
orward, hold to see history

Hello World from Jitsu!

Unikerel booted in 0.303204 seconds, 1.227919 seconds ago

Live: (G0 Stats ould Manifes

Allocated Bytes 3m 55 packages

Head Words 126k Name Version

Love Words 124K unikernel
base-bytes legacy
base-no-ppx base
base-threads base
base-unix base
base64
camip4 4.01+system

channel

http://www.skjegstad.com/blog/categories/jitsu/

MirageOS/Git+browser

&~ c roscidus.com/blog/cuekeeper

 Job Jiil Personal

Next actions +
Email

Reading +

Subscribe to Mirage list
Read "Real World OCaml'
Try OCaml tutorials

Follow Mirage tutonal
Read "My First Unikernel'

Read wikipedia page on GTD

n Read "My First Unikermne{"

action ir; nikernel (shov
Reading show)

Slower than the official tutorial, but explains what's going on in more detail:

I lAas/ON41 A \
)(S0 VT FAVE YAV

Follow Mirage tutonal

Make a Mirage unikernel (show
Reading (show)

The official tutorial works on Linux or OS X: http://openmirage.org/wik

(arit Inm ontryu
({dQQ 100 entry

Try OCaml tutorials

Learn OCaml (show
Reading (show)

On-line interactive tutorial: http://try.ocamlipro.com
Also, lots of useful stuff here: http://ocaml.org/learn/tutorials

http://roscidus.com/blog/blog/2015/04/28/cuekeeper-gitting-things-done-in-the-browser/

Merci pour votre attention!

Credits

Garrett Smith, Rainbows and Unikernels
hitps://www.youtube.com/watch?v=cUvNths_5RA

Adam Wick, Unikernels: Who, What, Where, When, Why
https://www.youtube.com/watch?v=oHcHTFleNtg

Justin Cormack, The Road to Unikernels
http://roadtounikernels.myriabit.com/

https://mirage.io/ http://unikernel.org

Dan Nanni, Interesting facts about Debian Linux
hitp://xmodulo.com/interesting-facts-about-debian-linux.html

http://xmodulo.com/interesting-facts-about-debian-linux.html
http://roadtounikernels.myriabit.com/
https://www.youtube.com/watch?v=cUvNths_5RA
https://www.youtube.com/watch?v=oHcHTFleNtg
https://mirage.io/
http://unikernel.org

