

C++ and microcontrollers

Alexis Jeandet <alexis.jeandet@lpp.polytechnique.fr>

 jeandet jeandet freenode:jeandet @jeandet:matrix.org

mailto:alexis.jeandet@lpp.polytechnique.fr
https://github.com/jeandet

Disclaimer
● I’m not a C++ expert
● This is not about a finished product
● This is more about C++ experiments
● We care about optimizations from -O1 optimization

level
● Used to think that C++ wasn’t for microcontrollers

C++ trolls

In other words, the only way to do good, efficient, and system-level and portable C++

ends up to limit yourself to all the things that are basically available in C. And limiting your

project to C means that people don't screw that up, and also means that you get a lot of

programmers that do actually understand low-level issues and don't screw things up with

any idiotic "object model" crap.

C++ leads to really really bad design choices. You invariably start using the "nice" library features of the language like STL and Boost and other total and utter crap, that may "help" you program, but causes:

Pros: none

Cons: ill-defined, far too big, Object Oriented Programming, loads of baggage, ecosystem that buys into its crap, enjoyed by bad programmers.

Microcontrollers?

MCU in cars

Microcontrollers?

● A microcontroller (MCU for microcontroller unit) is a small computer on a
single metal-oxide-semiconductor (MOS) integrated circuit chip. In modern
terminology, it is similar to, but less sophisticated than, a system on a chip
(SoC); an SoC may include a microcontroller as one of its components. A
microcontroller contains one or more CPUs (processor cores) along with
memory and programmable input/output peripherals. Program memory in
the form of ferroelectric RAM, NOR flash or OTP ROM is also often
included on chip, as well as a small amount of RAM. Microcontrollers are
designed for embedded applications, in contrast to the microprocessors
used in personal computers or other general purpose applications
consisting of various discrete chips.

Microcontroller Vs Computer
MCU Computer

Power ~1µW to ~1W ~1W to ~1kW

RAM 32B to ~1MB ~32MB to TB

FLASH 512B to ~2MB GB to TB

Core frequency ~1MHz to ~1GHz ~1GHz to ~4GHz

Cores 1 to N 1 to N

MMU NO YES

Memory Management Unit ?

Memory Management Unit ?

● No MMU → no Process (mostly)
● No MMU → heap memory fragmentation
● No MMU → no Segfaults
● No MMU → different operating systems

Programming models

● Operating system
– Good for complex multiprogramming problems

● Bare metal
– Faster and simpler for basic control loops

So what does it looks like?

Let’s dive into a datasheet

Let’s consider a simple example
● LED blink, AKA the MCU hello world
● With C and C++
● C++ shouldn’t produce more assembly than C
● Should be more expressive and safer
● There shouldn’t be anything done a run time that

can be done at compile time

Raw C version
int main(void)
{
 // enable GPIOB
 ((volatile uint32_t)(0x40023830)) |= (1 << 1);
 // configure GPIO PB8 as output
 ((volatile uint32_t)(0x40020400)) |= (1 << 16);
 for (;;)
 {
 //toggle led
 ((volatile uint32_t)(0x40020414)) = *((volatile uint32_t*)(0x40020414)) xor (1 << 8);
 for (volatile int i = 0; i < 1024 * 1024 * 2; i++);
 }
}

C++ Version

int main(void)
{
 rcc::enable_clock(stm32f7, stm32f7.GPIOB);
 set_direction(stm32f7, GPIOB8, stm32::gpio::mode::output);
 for (;;)
 {
 stm32f7.GPIOB.od.get<8>() = !stm32f7.GPIOB.od.get<8>();
 for (volatile int i = 0; i < 1024 * 1024 * 2; i++)
 ;
 }
}

Overhead?

Can we make this more interesting?

Can we make this more interesting?

● Let’s make a software PWM led blink
● We want to decouple how we set LED value

from PWM code
● We want to decouple how we compute duty

cycle from PWM code

Strong types

Let’s step back a little
● We’ll have to deal a lot with peripherals and registers
● Registers have many bit fields
● Registers or bit fields can be read-only
● Embedded systems are deterministic (no hot-plug..)
● Debug and Tests are easier on desktop PC
● Prefer enum classes to literals

Registers

uint32_t tmp = *((volatile uint32_t*)(0x40023830));
tmp &= ~(1u << 1);
tmp |= (1u << 1);
((volatile uint32_t)(0x40023830)) = tmp;

Registers (Structures)

typedef struct device_id
{

uint32_t VID;
uint32_t PID;

}device_id;

volatile device_id_t* id = (device_id_t*)0x12345678;
id->VID = 32;

● Not convenient with spaced registers
● Bit field access not much better
● User has to “hack” memory layout of structures
● User has to ensure that structure is packed

Registers (simplified)
template <typename T, const uint32_t address>
struct reg_t
{
 inline reg_t& operator=(const T& value) noexcept
 {
 reinterpret_cast<T>(address) = value;
 return *this;
 }
 constexpr operator T&() noexcept { return *reinterpret_cast<T*>(address); }
 constexpr operator const T&() const noexcept { return *reinterpret_cast<T*>(address); }
};

reg_t<uint16_t, 0x1FF0F442> flash_size; // declare some register
std::cout << flash_size; // you can access its value
flash_size = 123; // you can set its value

Bit field
template <typename reg_t, int start_index, int stop_index=start_index, typename value_t=int>
struct bitfield_t
{

 constexpr bitfield_t operator=(const value_t& value) const noexcept
 {
 reg_t::value() = (reg_t::value() & ~mask) | shift(value);
 return bitfield_t<reg_t,start_index,stop_index,value_t>{};
 }

 constexpr operator value_t() noexcept{
return value_t((int(reg_t::value())& mask)>>start); }

 constexpr operator value_t() const noexcept {
return value_t((int(reg_t::value())& mask)>>start); }

};

C++ peripherals/register/bit-fields
● Use types instead of values
● Can mix with enum classes
● Generates compile time error on read-only

register/field write
● 0 or tiny overhead
● Way more expressive
● Allow function specialization

Now let’s make a basic MP3 Player

Now let’s make a basic MP3 Player

MCU MP3
Codec

Now let’s make a basic MP3 Player
● No filesystem
● Simple infinite loop
● Made with modern C++
● Strong decoupling between layers
● Use SD bus but should work with SPI

Basic MP3 player
● Clocks, IO, peripheral init
● SD card init
● MP3 codec init
● Main loop

– Get next data block
– Give data block to codec

Let’s look the code

Simple MP3 player

● Main loop can easily work on any system
● SD card SW protocol decoupled from HW layer
● Source code looks simple and expressive
● Almost no SW error possible
● We can easily develop/test a filesystem driver on

computer

Conclusions
● Writing no-overhead C++ on MCU is possible
● Const const const!!!
● C++ allow modular code with no run-time costs
● C++ can be safer than C
● C++ doesn’t help to solve HW bugs/issues
● C++ isn’t “C with classes”
● C++ templates are “Pay for what you use”
● Templates debug is a big pain
● Computers have std::, microcontrollers’ll have mst::

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

