;_,g “[) Alexis Jeandet <alexis.jeandet@Ipp.polytechnique.fr>
R AL () jeandet MJeandet #irc freenode:jeandet [matrlx] @jeandet:matrix.org

mailto:alexis.jeandet@lpp.polytechnique.fr
https://github.com/jeandet

Disclaimer

* I'm not a C++ expert
* This Is not about a finished product

e This Is more about C++ experiments

* We care about optimizations from -O1 optimization
level

e Used to think that C++ wasn’t for microcontrollers

C++ trolls

In other words, the only way to do good, efficient, and system-level and portable C++
ends up to limit yourself to all the things that are basically available in C. And limiting your
project to C means that people don't sCrew that up, and also means that you get a lot of
programmers that do actually understand low-level issues and don't screw things up with

any idiotic "object model" crap.

Pros: none

Cons: ill-defined, far too big, Object Or

ecosystem that buys into its crap ot by pogramming, loads of baggage

enjoyed by bad programmers.

?

trollers

Microcon

o
[-—
ks
-
=
[—
=
|
-
L —)
=
[—)
B=
—
-~

L]

5 MICROCONTROLLERS
EVERYWHERE

i

I
I
I
I
I
I
I

LREDEREE

VERREREEE
BER-ENEE

MCU In cars

Driver EventData Active
Night Vision Alertness fecorder Cabin Noise Cabin Entertainment
Monitoring Auto-Dimming Suppression Environment System

Windshield
Wiper Control

Head-Up Mirror Contrals
Display Accident . Battery
Recorder Ir_1ter.mr Vaice/Data Management

Lighting Communications PR e

i Engine Instrument 3
Dg:|$:‘|ge nt Control Parental Cluster | / Correction

Co . Electronic
fTDII Collection

Adaptive Front

ntrols

Lightin _ = -

S X . - = - Digital Turn Signals
&7 :

Adaptive Cruise y Mavigation
Control
Systam
5 ,_.—-—-—'_'_-_._._-_- m E 4
Aut al 5
utomatic Security System

Braking /

Electric
Power Steering

| |

Antilack Active Suspension

‘\N“\-. Active Exhaust
‘ll \Noise Suppression

QBDN oo Elect i
Electranic Throttle idla Transmission f::a I::I]i::: Braking Hill-Haold
Cantrol
CDmTTI i Shon/3tart Active Remote N Cantrol Cantrol
E EEE:'C Vibration Keyless 593; Pc;f"tl";‘“ Parking Regenerative
Control Entry/ UL Tire Braking
Timing ang System
cylinder Blindspot Departure Active Presaurs
De-activation Detection Warning Yaw Muonitering

Control

/DVZ 2 "OA\ S/ é\}

Q

H;ifijj Microcontrollers?

WIKIPEDIA

The Free Encyclopedia

* A microcontroller (MCU for microcontroller unit) is a small computer on a
single metal-oxide-semiconductor (MOS) integrated circuit chip. In modern
terminology, it is similar to, but less sophisticated than, a system on a chip
(SoC); an SoC may include a microcontroller as one of its components. A
microcontroller contains one or more CPUs (processor cores) along with
memory and programmable input/output peripherals. Program memory in
the form of ferroelectric RAM, NOR flash or OTP ROM is also often
Included on chip, as well as a small amount of RAM. Microcontrollers are
designed for embedded applications, in contrast to the microprocessors
used in personal computers or other general purpose applications
consisting of various discrete chips.

Microcontroller Vs Computer

Power

RAM

FLASH

Core frequency
Cores

MMU

MCU
~1uW to ~1W
32B to ~1MB
512B to ~2MB
~1MHz to ~1GHz

1to N

NO

Computer
~1W to ~1kW
~32MB to TB
GBtoTB
~1GHz to ~4GHz

1to N

YES

Memory Management Unit ?

CPU physical memory

CPU casing physical address #1
physical address #2
physical address #3

virtual address
W/

TLB MMU

Y/

physical address

bus

CPU: Central Processing Unit
MMU: Memory Management Unit
TLB: Translation lookaside buffer

Memory Management Unit ?

No MMU - no Process (mostly)
No MMU - heap memory fragmentation
No MMU - no Segfaults

No MMU - different operating systems

Programming models

e Operating system
— Good for complex multiprogramming problems

 Bare metal
- Faster and simpler for basic control loops

So what does it looks like?

USB PHY RS232 JTAG PHY L/Ds CAN PCI
LEON3 Template Design . | _ _ I I _ _

i Serial JTAG Ethernet Spacewire CAN 2.0 PCI

LEON3 UsB Dbg Link | | Dbg Link MAC Link Link

Processor
AMBA AHB
] AMBA APB
AHB Memory AHB/APB 1 1 1 1 1]
Controller Controller Bridge
2 UART Timers IrqCirl IO port
Video PSR2IF R5232 WDOG 32-bit 17O port

PROM 0

SRAM

SDRAM

DAC

Let’'s dive Into a datasheet

Let’s consider a simple example

* LED blink, AKA the MCU hello world

 With C and C++

* C++ shouldn’t produce more assembly than C
* Should be more expressive and safer

* There shouldn’t be anything done a run time that
can be done at compile time

Raw C version

int main(void)
{
/I enable GPIOB
((volatile uint32_t)(0x40023830)) |= (1 << 1);
// configure GPIO PB8 as output
((volatile uint32_t)(0x40020400)) |= (1 << 16);
for (;;)
{
/ltoggle led
((volatile uint32_t)(0x40020414)) = *((volatile uint32_t*)(0x40020414)) xor (1 << 8);
for (volatile inti=0; 1< 1024 * 1024 * 2; i++);
}
}

C++ Version

int main(void)
{
rcc..enable_clock(stm32f7, stm32f7.GPIOB);
set_direction(stm32f7, GPIOB8, stm32::gpio::mode::output);
for (;;)
{
stm32f7.GPIOB.od.get<8>() = !stm32f7.GPIOB.od.get<8>();

for (volatile int 1= 0; 1< 1024 * 1024 * 2; i++)

Overhead?

Can we make this more interesting?

Can we make this more interesting?

e | et's make a software PWM led blink

* We want to decouple how we set LED value
from PWM code

* We want to decouple how we compute duty
cycle from PWM code

Strong types

Let’'s step back a little

We’ll have to deal a lot with peripherals and registers
Registers have many bit fields

Registers or bit fields can be read-only

Embedded systems are deterministic (no hot-plug..)
Debug and Tests are easier on desktop PC

Prefer enum classes to literals

Registers

uint32_t tmp = *((volatile uint32_t*)(0x40023830));
tmp &= ~(1u << 1);

tmp |= (lu << 1);

((volatile uint32_t)(0x40023830)) = tmp;

Registers (Structures)

typedef struct device_id

{

uint32 t VID: volatile device id_t*id = (device id_t*)0x12345678;
uint32_t PID; id->VID = 32;
}device_id;

* Not convenient with spaced registers

* Bit field access not much better

* User has to “hack” memory layout of structures
* User has to ensure that structure is packed

Registers (simplified)

template <typename T, const uint32_t address>
struct reg_t

{

inline reg_t& operator=(const T& value) noexcept
{
reinterpret_cast<T>(address) = value;
return *this;
}
constexpr operator T&() noexcept { return *reinterpret_cast<T*>(address); }
constexpr operator const T&() const noexcept { return *reinterpret_cast<T*>(address); }

J

reg_t<uintl6_t, OxX1FFOF442> flash_size; // declare some register
std::cout << flash_size; /[you can access its value
flash_size = 123; // you can set its value

Bit field

template <typename reg_t, int start_index, int stop_index=start_index, typename value_t=int>
struct bitfield _t

{
constexpr bitfield _t operator=(const value_t& value) const noexcept
{
reg_t::value() = (reg_t::value() & ~mask) | shift(value);
return bitfield _t<reg_t,start_index,stop_index,value_t>{};
}

constexpr operator value_t() noexcept{

return value_t((int(reg_t::value())& mask)>>start); }
constexpr operator value_t() const noexcept {

return value_t((int(reg_t::value())& mask)>>start); }

C++ peripherals/register/bit-fields

* Use types instead of values
e Can mix with enum classes

* Generates complile time error on read-only
register/field write

* O or tiny overhead
* Way more expressive
* Allow function specialization

Now let’'s make a basic MP3 Player

Now let’'s make a basic MP3 Player

&= mcu Ee= @()
- Codec \ #

Now let’'s make a basic MP3 Player

* No filesystem
e Simple Iinfinite loop

e Made with modern C++

e Strong decoupling between layers
* Use SD bus but should work with SPI

Basic MP3 player

Clocks, 10O, peripheral Init
SD card init
MP3 codec Init

Main loop
- Get next data block
- Give data block to codec

Let’s look the code

Simple MP3 player

* Main loop can easily work on any system

* SD card SW protocol decoupled from HW layer
* Source code looks simple and expressive

* Almost no SW error possible

* We can easily develop/test a filesystem driver on
computer

Conclusions

Writing no-overhead C++ on MCU is possible
Const const const!!!

C++ allow modular code with no run-time costs
C++ can be safer than C

C++ doesn’t help to solve HW bugs/issues
C++isn’'t “C with classes”

C++ templates are “Pay for what you use”
Templates debug is a big pain

Computers have std::, microcontrollers’ll have mst::

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

