
Python in the browser with
Pyodide

Roman Yurchak

2025/04/07

About me

Roman Yurchak

ML engineer and founder at Symerio

Background in computational physics.

Previously core developer at Pyodide, also scikit-learn

A Python distribution for the browser and Node.js based on WebAssembly.

Python in the browser with Pyodide

- CPython compiled to WebAssembly/Emscripten

- Can install Python packages (including numpy, scipy, ..)

- Javascript / Python bridge

Python simulation in the browser

Source: austen.uk/post/online-demos-with-pyodide/

Example of running a simulation of the 2D
Ising model (ferromagnetism in statistical
mechanics) in the browser

- Code in Python already exists
- We want to easily share its output
- Using interactive visualization

https://austen.uk/post/online-demos-with-pyodide/
https://docs.google.com/file/d/12jQvG10grZ5_P6n6LFPE1qerVkdC-9nU/preview
https://en.wikipedia.org/wiki/Ising_model

Agenda

1. Python in the browser with Pyodide

2. Applications: education, scientific computing etc

Python in the browser with
Pyodide: an overview

A binary instruction format for a stack-based virtual machine

- Portable
- Small code size
- Secure
- No standard APIs or syscalls, only an import mechanism

- Implemented in browsers
- Can also be executed in non-web environments

What is WebAssembly?

https://webassembly.org/

C/C++ code

WASM module

HTML page Web browser

The Emscripten build toolchain

https://emscripten.org/

Emscripten is a complete compiler toolchain targeting WebAssembly

+

JS stdlib

Pyodide Components

CPython

micropip
Pure python wheels

from PyPi

WASM +
Javascript stdlib+

+

Python / Javascript
Foreign function interface

...

Pyodide was created by Michael Droettboom in 2018 at Mozilla

Upstream CPython WASM work

Since 2018 Pyodide was building CPython with many patches.

In 2022 work started on adding WASM build targets in CPython upstream.

Lots of improvements and fixes in Python 3.11
- Upstreaming of Pyodide patches
- Contributing Emscripten fixes
- More of CPython test suite passes

Official Tier 3 support for WASM/Emscripten since Python 3.11

PEP 783: Emscripten Packaging (draft)
 - necessary for wasm/Emscripten wheels on PyPI

Thanks to Hood Chatham, Christian Heimes, Brett Cannon, and Ethan Smith.

https://peps.python.org/pep-0783/

Related projects
A number of other projects also allow to run Python in the browser:

- Brython: Python 3 javascript implementation + parts of the stdlib

- pypy.js: PyPy compiled to asm.js (no longer maintained)

- RustPython: using the Rust toolchain to build for WASM

And more recently also,

- Emscripten-forge: Build wasm/emscripten packages with conda/mamba/boa

- CoWasm: Collaborative WebAssembly for Servers and Browsers. Built using Zig.

For practical usage, compatibility and access to the package ecosystem is critical.

Pure Python packages with micropip

Installed with micropip, if wheels available:

- from PyPI or arbitrary location
- rudimentary dependency resolution

Some packages need to be patched,
- with ongoing effort to upstream fixes

Examples

See PEP 427:

-py3-none-any.whl -> pure Python wheel

-cp38-manylinux1_x86_64.whl -> Linux wheel (not compatible with pyodide)

https://www.python.org/dev/peps/pep-0427/

Packages with binary extensions

Need to use the Pyodide build system (write a meta.yaml, similar to conda)

- A cross-compilation setup, now building wheels

- Recent support for pypa/build for build isolation

- Additional post-processing: unvendoring tests as separate packages

- Still some way to a wheel standard for WASM, before their support on PyPI
- No stable ABI in Emscripten

Wheels distributed via JSDelivr.

There are also other more conda / conda-forge oriented initiatives (emscripten-forge).

Supported Python packages in Pyodide

(pytest, ..)

120 packages in pyodide/packages/ …

Foreign function interface (JS ↔ Python)
Using Python from Javascript

A Python object in global scope can be
accessed from Javascript

For more details: pyodide.org/en/stable/usage/type-conversions.html

let sum = pyodide.globals.get("sum");

sum([1, 3, 4]); // 8

from js import setTimeout

setTimeout(f, 100)

- Automatic conversion of simple native types (float, str, int, …,)
- Other types are proxied

Using Javascript from Python

A Javascript object in global scope
can be imported into Python

https://pyodide.org/en/stable/usage/type-conversions.html

const functools =

pyodide.pyimport("functools");

functools.reduce((x,y) => x*y, [1,2,3,4]);

const math = pyodide.pyimport("math");

math.lcm(4, 6, 13); # Least common multiple

Example: Python utils from JavaScript

const random = pyodide.pyimport("random");

random.sample(

 pyodide.toPy(['red', 'blue']),

 5

).toJs();

Example: random.sample
From Javascript:

from js import fetch

response = await fetch("example.com", method="GET",

redirect="error")

text = await response.text()

Examples: fetch API from Python

Emscripten Host Environment
Features

- 32 bit architecture
- (Javascript) In memory Filesystem
- System calls implemented in Javascript

Limitations

- No subprocess, no threading (theoretically possible, significant work needed)
- No sockets
- Not all syscalls are implemented in Emscripten
- Difficult to use traditional I/O

Some use cases
Interactive computing
Education
Machine learning

Client-only Architecture
Application with a backend server Application with only static files

Client-only Web Apps in Python

Usability
No Python installation needed, just open a web page

Scalability
Serving static files is easy, scales well to a large number of users

- No need for extensive backend infrastructure / maintenance effort

Packages only downloaded once, then cached in the browser

Privacy
All calculations run locally, no data sent to a remote server

- Good for users
- Good for developers (less GDPR related paperwork)

See: “Analyzing sensitive data at scale doesn’t have to be a headache” by Tambe
Tabitha

www.socialfinance.org.uk/blogs/analysing-sensitive-data-scale-doesn’t-have-be-headache

Client-only Web Apps in Python

https://www.socialfinance.org.uk/blogs/analysing-sensitive-data-scale-doesn%E2%80%99t-have-be-headache

A growing ecosystem

- Pyscript: a framework to create rich Python applications in the browser using HTML
pyscript.net/ by Anaconda

- Irydium: Interactive documents and data visualizations in markdown irydium.dev

- React + Pyodide: using a JavaScript framework in Python
blog.pyodide.org/posts/react-in-python-with-pyodide/

- wc-code: running Python code snippets with HTML tags
github.com/vanillawc/wc-code

https://pyscript.net/
https://irydium.dev/
https://blog.pyodide.org/posts/react-in-python-with-pyodide/
https://github.com/vanillawc/wc-code

Notebook environments

jupyterlite.readthedocs.io

Many other interactive computing projects:

- Starboard Notebook: The shareable in-browser
notebook starboard.gg/#python

- Basthon: Static version of Jupyter notebook
notebook.basthon.fr (in French)

https://jupyterlite.readthedocs.io/
https://starboard.gg/#python
https://notebook.basthon.fr/

Interactive dashboards

https://github.com/voila-dashboards/voici Dashboards with Jupyterlite

Other solutions:
- Stlite: In-browser Streamlit
- Gradio Lite

https://github.com/voila-dashboards/voici

Online documentation
Interactive documentation that usage

- Scikit-learn examples:
https://scikit-learn.org/dev/lite/lab/index.html

https://scikit-learn.org/dev/lite/lab/index.html

Use case: education
- Python now used extensively for education

- Avoid spending time installing Python for students

- Make sure everyone has the same environment

- Privacy preserving (i.e. without using third party services) and without

hosting effort

Education: Projet Capytale

Commun numérique soutenu par le ministère
de l'éducation nationale

Outil de création et le partage d’activités de codage entre enseignants et élèves

Education: Projet Capytale

Machine learning in the browser
Many ways projects allows to run machine

- ONNX
- transformers.js
- Burn

More recently WebGPU support.

Python still useful for pre-processing / post-processing

Usage in LLMs for a Python interpreter
Large Language Models (LLMs) can interact with a Python interpreter to run
generated code.

Some use Pyodide to either run in the browser sandbox or run Python from
Javascript.

Examples

- open-webui

- pydantic-ai

- LangChain.js

Latest developments and
outlook

Download sizes for packages

Download size is not an optimisation

criterion in the Python ecosystem (unlike

for JS)

Historically large packages (e.g. scipy)

Inclusions of test files in the main package

(e.g. import numpy.tests)

Example of loading pandas

- Keep up with Emscripten releases (fixes, size and performance improvements)
- Emscripten wheels on PyPI
- Support for synchronous I/O and web workers
- Reduce size of packages
- Improve sustainability of the package build system
- Better support for scipy
- Other features: Threading, SIMD, GPU

Roadmap

New contributors are welcome!

pyodide.org/en/stable/project/roadmap.html

https://pyodide.org/en/stable/project/roadmap.html

Thank you!

github.com/pyodide/pyodide

https://github.com/iodide-project/pyodide

